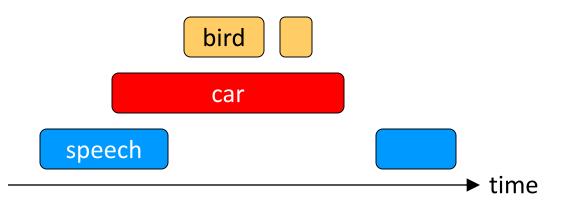
A Comparison of Five Multiple Instance Learning Pooling Functions for Sound Event Detection with Weak Labeling

Yun Wang, **Juncheng L**i, Florian Metze May 14, 2019

Sound Event Detection

Detection = audio tagging + localization



Strong labeling is expensive to obtain

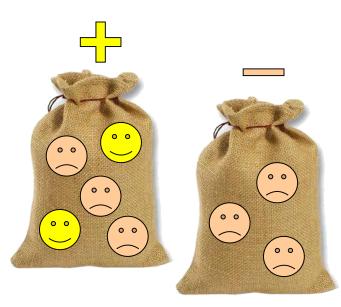
Sound Event Detection

Train with weak labeling

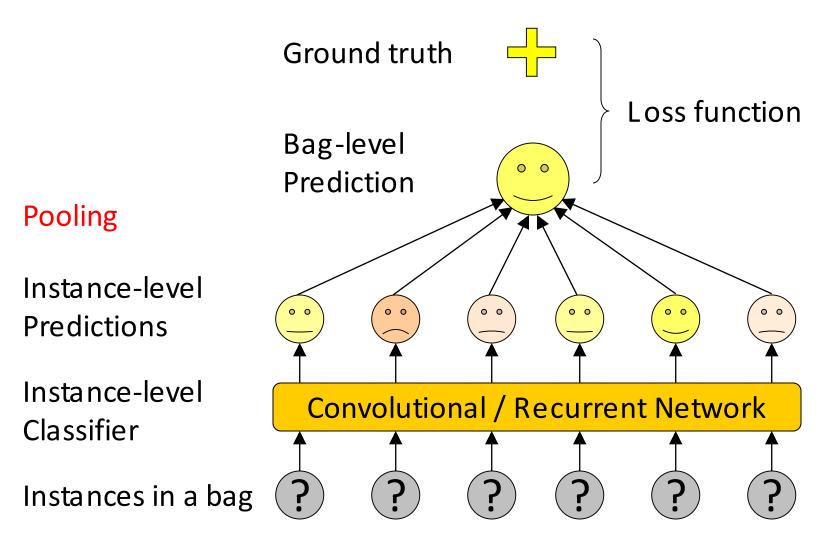
But still, we want both tagging and localization output

Multiple Instance Learning

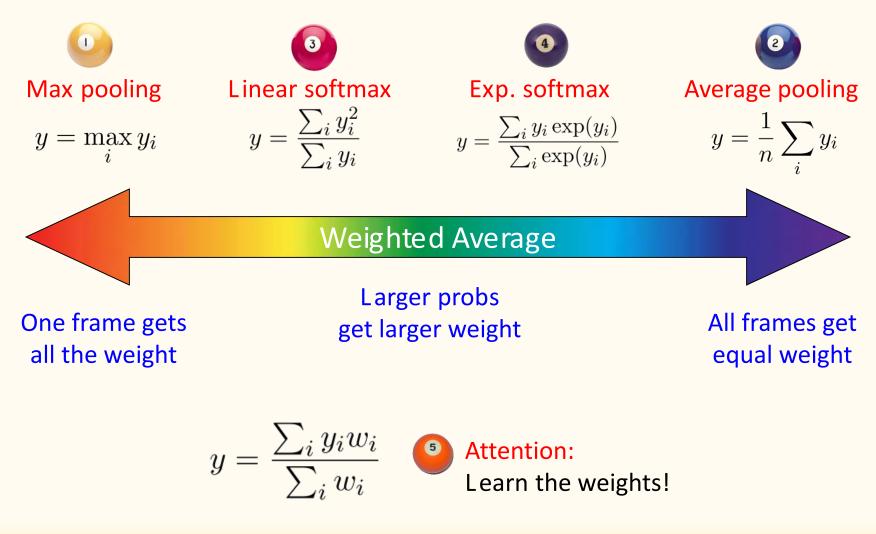
- SED with weak labeling is a Multiple Instance Learning (MIL) problem
 - □ Bag is positive ⇔ any instance is positive
 - Recording = bag, frames = instances



Multiple Instance Learning



Pooling Functions



Pooling Functions

We found linear softmax best for localization!

$$y = rac{\sum_i y_i^2}{\sum_i y_i}$$
 $rac{\partial y}{\partial y_i} = rac{2y_i - y}{\sum_j y_j}$ Positive when $y_i > y/2$

When bag is positive:

- \Box y_i gets away from y/2
- Only boosts frames with $y_i > y/2 nice localization!$
- When bag is negative:

• y_i approaches y/2 – finally converges to zero

0 0

Pooling Functions

What's wrong with attention?

$$y = \frac{\sum_{i} y_{i} w_{i}}{\sum_{i} w_{i}} \qquad \frac{\partial y}{\partial y_{i}} = \frac{w_{i}}{\sum_{j} w_{j}} \qquad \frac{\partial y}{\partial w_{i}} = \frac{y_{i} - y}{\sum_{j} w_{j}}$$
Always positive
Positive when $y_{i} > y$

When bag is positive:

• All y_i increase \bigcirc attention focuses where $y_i > y$

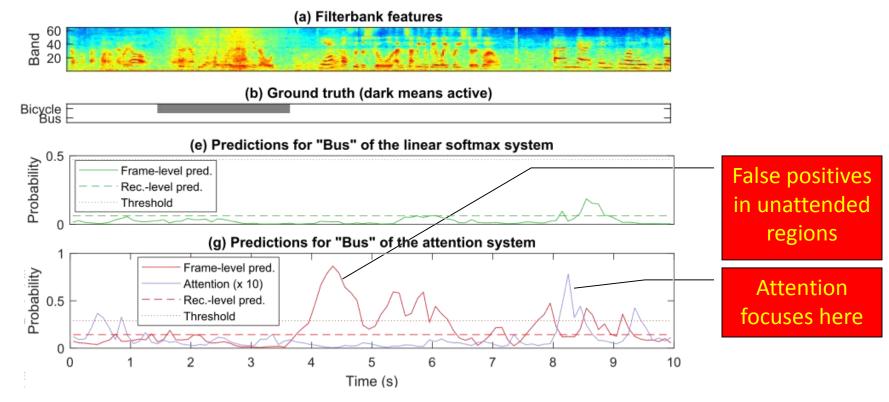
00

When bag is negative:

□ All y_i decrease \bigcirc attention focuses where $y_i < y$

Smaller probs get larger weight!

Failure Mode of Attention



- Too many frame-level false positives
- Inconsistent recording-level and frame-level predictions

EVALUATION I: DCASE 2017 Challenge, Task 4

DCASE 2017: Task

17 event types

Vehicles, warnings

Training data:

- \sim ~50k recordings * 10 seconds each = ~140 hours
- Weakly labeled

Test data:

- 488 recordings * 10 seconds each = \sim 1.4 h
- Strongly labeled

Evaluation metrics:

- Tagging: F1
- □ Localization: error rate & F1 on 1s segments

DCASE 2017: Model

Input:

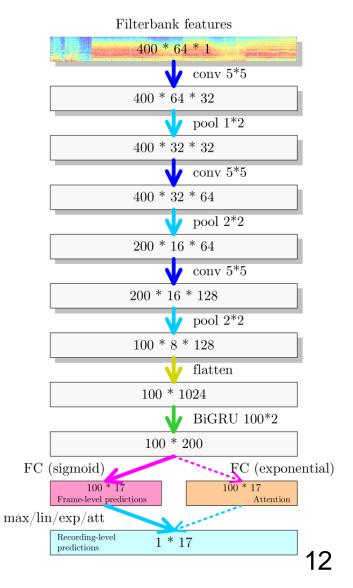
Logmel features @ 40 Hz

Structure:

3 conv layers + 1 GRU layer

• Output:

- Frame-level event probs at 10 Hz
- For tagging: pooled globally into recording-level event probs
- For localization: pooled over 1s segments



DCASE 2017: Results

Pooling Func	Tag F1	Loc ER	Loc F1	Loc #FN	Loc #FP
Max	45.3	84.7	35.4	3,154	1,253
Linear softmax	49.5	84.3	43.7	2,528	2,187
Attention	49.2	102.5	40.1	2,434	3,309

- Max: too many false negatives (FNs) hurt F1
- Attention: too many false positives (FPs) hurt ER
- Linear softmax: balanced FNs and FPs

EVALUATION II: Google Audio Set

Audio Set: Task

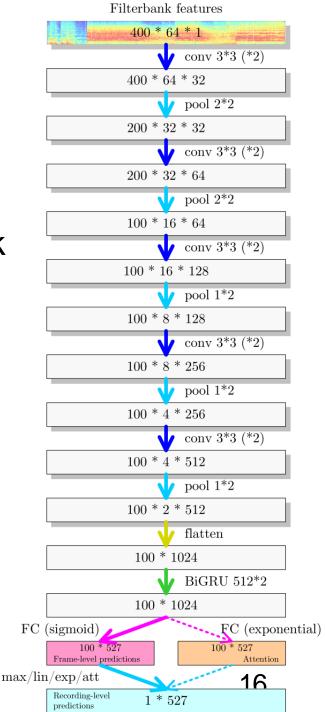
Data:

- □ 527 event types (include the 17 events of DCASE)
- Weakly labeled
- Training: $\sim 2M$ recordings * 10s = 8 months
- Test: \sim 20k recordings * 10s = 56 hours
- Evaluation metrics:
 - Audio Set only measures tagging
 - MAP, MAUC, d'
 - Reuse DCASE data & metrics for tagging & localization
 - Tag F1, Loc ER, Loc F1 over 1s segments

Audio Set: Model

TALNet:

- Tagging and Localization Network
- 10 conv layers, 1 GRU layer
- Same input & output as before
- No fine-tuning when applied to DCASE data



Audio Set: Result 1/3

	System	No. of	Audio Set			DCASE 2017		
Group		Training Recs.	MAP	MAUC	d'	Task A	Task B	
						$\mathbf{F1}$	\mathbf{ER}	$\mathbf{F1}$
TALNet (Sec. 3.3)	Max pooling	2M	0.351	0.961	2.497	52.6	81.5	42.2
	Average pooling		0.361	0.966	2.574	53.8	101.8	46.8
	Linear softmax		0.359	0.966	2.575	52.3	78.9	45.4
	Exp. softmax		0.362	0.965	2.554	52.3	89.2	46.2
	Attention		0.354	0.963	2.531	51.4	92.0	45.5

TALNet works out of the box on DCASE

- Linear softmax is best for localization
 - And good enough for tagging

Audio Set: Result 2/3

		No. of	Audio Set			DCASE 2017		
Group	System	Training Recs.	MAP	MAUC	d'	Task A	Task B	
						F 1	\mathbf{ER}	$\mathbf{F1}$
TALNet (Sec. 3.3)	Max pooling		0.351	0.961	2.497	52.6	81.5	42.2
	Average pooling		0.361	0.966	2.574	53.8	101.8	46.8
	Linear softmax	2M	0.359	0.966	2.575	52.3	78.9	45.4
	Exp. softmax		0.362	0.965	2.554	52.3	89.2	46.2
	Attention		0.354	0.963	2.531	51.4	92.0	45.5
Literature	Hershey [71, 15]	1M	0.314	0.959	2.452			
	Kumar [128]	22k	0.213	0.927				
	Shah $[48]$	22k	0.229	0.927				
	Wu [131]	22k		0.927				
	Kong $[54]$	2M	0.327	0.965	2.558			
	Yu [55]	2M	0.360	0.970	2.660			
	Chen $[56]$	600k	0.316					
	Chou [57]	$1\mathrm{M}$	0.327	0.951				

- TALNet closely matches state of the art on tagging
 - Yu's system uses multi-level attention and can't do localization!
- Amount of training data matters!

Audio Set: Result 3/3

		No. of	Audio Set			DCASE 2017		
Group	\mathbf{System}	Training	MAP	MAUC	d'	Task A	Task A Task	
		Recs.				F1	\mathbf{ER}	$\mathbf{F1}$
TALNet (Sec. 3.3)	Max pooling		0.351	0.961	2.497	52.6	81.5	42.2
	Average pooling		0.361	0.966	2.574	53.8	101.8	46.8
	Linear softmax	2M	<mark>0.359</mark>	0.966	2.575	52.3	78.9	45.4
	Exp. softmax		0.362	0.965	2.554	52.3	89.2	46.2
	Attention		0.354	0.963	2.531	51.4	92.0	45.5
DCASE only (Sec. 3.2.3)	Max pooling					45.3	84.7	35.4
	Average pooling					50.0	105.9	41.3
	Linear softmax	50k				49.5	84.3	43.7
	Exp. softmax					48.5	100.6	42.8
	Attention					49.2	102.5	40.1

Adding more data helps the 17 DCASE events
 Even though most of it belongs to 510 other events

Summary

Linear softmax is the best for localization

- Better than max: unobstructed gradient flow
- Better than attention:
 - Balanced false negatives and false positives
 - Consistent frame-level & recording-level predictions
- We built TALNet
 - First simultaneous audio tagging and localization
 - Oosely matches state of the art on Audio Set
 - Good performance on DCASE 2017 out of the box
- Future work
 - Attention pooling with monotonicity constraint?

Thanks!

Questions?