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ENVIRONMENTAL SOUNDS INTRODUCTION @
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= A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION | JUNCHENG (BILLY) LI Carnegie Mellon University




DATAS ET INTRODUCTION O

e 1170 clips development set:

e 4-fold cross validation

« 880 for training, 290 for testing

13 hours e 30 seconds / clip, ~B9 clips training per class
of recording in total e 390 clips evaluation set

e 24-Dit audio, 2 channels, sasmpling rate 44100HZ

forest office grocery store cafe bus metro statior park library tram residentia train car city center home  beach
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INTRODUCTION O

SIGNAL PROCESSING
FEATURE EXTRACTION
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MFCC

Mel-frequency cepstral
coefficient (61-dim)

Monaural MFCC : 23 window 20ms,
excluding Oth, including 1st 2nd
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GAUSSIAN MIXTURE MODEL (GMM) e

4- fold CV avg. accuracy

leGgMM

0.9

Baseline = - - ' -
0.7
0.6 i

MFCC BIMFCC Smile983  Smilebk

* Curse of
Dimensionality
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TRADITIONAL METHOD O

IDENTITY VECTOR (I-VECTOR)

» State-of-the-art technigue in the speaker verification field

= Universal background model (UBM), GMM with 256 components

= Mean Super Vector ) =m + T.

» Use Kaldi Toolkit and perform Linear Discriminant Analysis (LDA), and Within Class

Covariance Normalization (WCCN)

—ach projected test i-vector is scored (cosine similarity) against all model i-vectors.

stats.

MFCCs Compute Extract Train Calc. model
stats. i-vectors LDA\WCCN i-vectors
MECCs Compute Extract Apply Score
stats. i-vectors LDA\WCCN i-vectors
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IDENTITY VECTOR (I-VECTOR) TRADITIONAL METHOD  ® @

4- fold CV avg. accuracy

oMM U B 1vector

0.9

0.8

0.7

0.6

MFCC BIMFCC Smile983  Smilebk
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DEEP LEARNING METHOD O

EXPERIMENT SETUP

» Hyper parameter Tuning
* Tuned #layers, layer size, activation,

optimizer, dropout, batch norm
* Train >500 models

» System Configuration

* 4 Titan X (single node)
« 128CB, 16 cores (Intel i7)

= Framework
e Tensorflow and Keras
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DEEP LEARNING METHOD O

MUILTI-LAYER PERCEPTRON

Model Specifications
h = step(W,nax + by) = DNN input: . DN Input
y = wiyh+ by - Fe.atu res ovgr 2s windows Dense 256
- -. = \Window shift 1s BN + Dropout 0.2
«= DNN output: Dense 256
n Majprity voting of window level BN + Dropout 0.2
. decisions Dense 256
1 ey BN + Dropout 0.2
e Dense 256
BN + Dropout 0.2
= Softmax

W (Source of
non-linearity)

BN: Batch Normalization
Rel u: Rectified Linear

Rectified Linear Unit (ReLU) Activation Function

Sigmoid

(o)
@ W, g step(x)
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DEEP NEURAL NETWORK (DNN) DEEP LEARNING METHOD P

4- fold CV avg. accuracy Better Performance

laGgMM BE1vector [ DNN with Larger Features

0.9

MFCC / BiMFCC:
12 layers /1.1M params

Smile983:
10 layers / 1M params

Smile6k:
16 layers / 4.4M params

MFCC BIMFCC Smile983  Smilebk
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RECURRENT NEURALNETWORK (RNN) »

» Use Gated Recurrent Units (GRU)
» Performs similarly to Long-Short Term Memory (LSTM) but faster

» Bi-directional RNN: Long-range context in both input directions

Model Specifications
RNN Input

re = 0(Waray + Wiphi—1 + by) CRU 512 forward

2 = 0(Wyoay + Wiohi— + b.) GRU 512 backward

g

softmax tput R | | | |
VB R = tanh(Wona, + Win(r © hy—1) +b,) ~ DroPoutOA

ht — (l — Zf:)’lf_l + Zfilt. 2

Softmax

BN: Batch Normalization

: : Rel u: Rectified Linear
RNN Plpelme Activation Function
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DEEP LEARNING METHOD O

RECURRENT NEURAL NETWORK (RNN)

e Dt iieiacy Better Performance
leGMmM BB Vector EEDNN IIRNN with Larger Features
0.9
MFCC / BiMFCC:

4 layers / 50k params

Smile983:
4 layers / 4.6M params

Smile6k:
4 |layers / 26.8M params

MFCC BiIMFCC Smile983  Smilebk
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RECURRENT NEURALNETWORK (RNN) .
SOME OBSERVATIONS

- Train Audio Example:

- Not enough variation in the audio signal
-RNN may work better on event-rich audio scenes

TRAIN

0.0
!_1.5
-3.0

4{1-4.5
4-6.0

i s
-9.0
-10.5

0 10 20 30 40 50 100 200 300 500
MFCC Index Neuron Index
BiMFCC (61- dim) over 100 frames RNN Neuron (512- dim) Activation
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DEEP LEARNING METHOD O

CONVOLUTIONAL
NEURALN ETWORK (CN N) Model Specifications

CNN Input
' A‘A Log Mel-spectrum

32x3x3-BN-RelLu
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CNN Pipeline
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CONVOLUTIONAL
NEURAL NETWORK (CNN)

0.9

0.8

0.7

0.6
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4- fold CV avg. accuracy

oMM BB TVector EEDNNUERNN BECNN

MFECC BIMFCC  Smile983  Smilebk LogMel

DEEP LEARNING METHOD O

Better Performance
with Larger Features

MFCC / BiMFCC:
12 layers / 1.6M params

Smile983 / Smile6k:
12 layers / 2.6M params

LogMel:
12 layers / 3.6M params
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MODEL ENSEMBLING

» \Weighted averaging or voting of a
collection of models

» Member models must be
accurate and diverse

» Ensembling reaches 88.2%

A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION | JUNCHENG (BILLY) LI |

0.9

0.8

0.7

0.6

DEEP LEARNING METHOD O

4- fold CV avg. accuracy

oMM OB 1VectorBEDNN BRRNN BBRCNN U U LateFusion

MECC BIMFCC  Smile983  Smile6k LogMel
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COMPARISON OF MODELS

» For neural network models (CNN, DNN,
RNN), larger feature set produces higher
accuracy

= RNN do not outperforrm DNN for Smile6k
feature, showing that temporal dynamics is
relatively weak

= RNN, CNN outperforms DNN on smaller
features (MFCC, Smile983), as sequence
input implicitly enhances feature

complexity
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DEEP LEARNING METHOD O

4- fold CV avg. accuracy
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DISCUSSION CONCLUSION e

Confusion Matrix (DNN)
mach . | | | | | | | | | | | | | l- 22.5
s L

vos | I

cafe/restaurant |
car

city center |
forest path |
grocery store |
home |- -—--eEe e ot * home ~ library

library |

metro station |
office |-

park -
residential area |- :

train | Ny RN e train ~ tram

tram

- café ~ grocery store

True label

» park ~ residential area

car

bus |-

city center |
forest path |
grocery store |

cafe/restaurant
office |
park |

home |
library |

beach |
metro station |

Predicted label
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CLASS WISE ACCURACY

CONCLUSION

GMM 1I-Vector DNN RNN CNN Fusion

Beach 69.3 80.7 89.8 | 80.3 | 78.7 | 92.3
Bus 79.6 82.4 053 | 88.6 | 72.1 | 95.3
Cafe/Rest; 83.2 70.0 699 | 647 | 664 | 79.9
Car 87.2 96.1 87.2 | 88.8 | 99.1 | 97.2
City 83.5 90.0 973 | 96.2 | 93.5 | 89.2
Forest 81.0 92.0 964 | 95.0 | 99.8 | 99.8
Grocery | 65.0 93.8 793 | 755 | 853 | 96.2
Home 82.1 65.2 84.8 | 75.77 | 82.9 | 88.2
Library | 504 76.1 81.2 | 81.6 | 727 | 86.2
Metro 4.7 83.5 973 | 9377 | 98.7 | 92.3
Office 98.6 93.1 99.7 | 79.6 | 97.6 | 99.7
Park 13.9 78.6 494 | 458 | 4577 | T71.2
Resident | 77.7 66.5 769 | 68.7 | 81.6 | 77.0
Train 33.6 72.4 51.1 | 61.2 | 59.2 | 65.2
Tram 85.4 84.6 97.0 | 90.7 | 91.7 | 92.2
Average | 72.5 81.7 84.2 | 80.2 | 82.2 | 88.1
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CONCLUSION CONCLUSION e

= Feature extraction is key

» Deep learning models > traditional ones (GCMM, i-vector)

» Environmental sound has weak temporal dynamics (DNN > recurrent networks)

= CNN, RNN don't do well (hot enough data to learn better features than signal
processing features)

= Ongoing work: Transfer Learning, Attention model, Raw Wave Input
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GAUSSIAN MIXTURE MODEL (GMM) . R

» Previous state-of-art speech & acoustic modeling

= Model each class with mixture of Gaussians. The probability for class | is
K
(@) = ) miN(z|p;, 3)
p k i, =~k
i

= Prediction sums over all audio segments, the pick the most likely class

are max(p’ = J
g max(p ;p@)
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DEEP NEURAL NETWORK (DNN)

= Each node (“neuron”) introduces non-linearity

= Each layer introduces non-linearity

= Architectural choice:

Number of neurons (256, 512 ..)

Batch normalization
Optimizer (RMSprop, adadelta, SGD)

Dropout (O- “"‘ ‘ \Output Layej
pout (O-1) ’/’\\”/\.

Hidden Layer 1

Input Layer
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DEEP LEARNING METHOD O

Types of heuron (which function to usej(relu, prelu..) ‘}’(/“\/ ; 5

Number of layers (3,5,10, 12..) "& "’
v

(& BOSCH |

O

Hidden Layer 2

Carnegie Mellon University

25



DEEP LEARNING METHOD O

DEEP NEURAL NETWORK (DNN)

0 ‘
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o308 . LT :'."" o LR [ -1 5
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Neuron Index

DNN's 1st layer Weight after FFT
which acts like a low-pass filter on each neuron’s 06

» |f we apply Savitzky-Golay smoothing function [24]

vector (61-dim). We get Figure2(b) which is the de-

noised weight of layer (each colored line

corresponds with one neuron vector), which looks

Weight Magnitude

like a filter bank.

0 10 20 30 40 50 60
MFCC Index

DNN's st layer Weight after Smoothing
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CONVOLUTIONAL NEURAL

NETWORK (CNN)
SOME OBSERVATIONS

This highly resembles a filter bank of bandpass filters.

We notice there is a sharp transition in filters at

around the 40th Me| band. This is due to the weak

energy beyond the 40t Mel band shown in Figure 5(a).

Our finding is consistent with prior work on speech
data [26]. The filter bank we learned are relatively

wider compared with that is learned in speech.
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DEEP LEARNING METHOD O

Nuber of Filters

Mel-ban Index

0.36
0.32
0.28
10.24
410.20
0.16

0.12
0.08

0.04

CNN Tst Convolutional2D layer's Weight after FFT
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